
Secure Coding
Implementation
This playbook describes the sequential steps for writing

secure code that defends against common web security

vulnerabilities, including SQL injection, XSS (Cross-Site

Scripting), and CSRF (Cross-Site Request Forgery)

attacks.

Step 1: Input Validation 

Enforce strict input validation to ensure that all incoming data

adheres to expected formats. Use whitelisting for allowed characters

and data types to reduce the risk of malicious input slipping through.

Step 2: Parameterized Queries 

Avoid SQL injection by using parameterized queries or prepared

statements. This method separates the SQL logic from the data,

preventing attackers from manipulating queries with harmful input.

Step 3: Output Encoding 

Prevent XSS attacks by encoding data before output. Convert special

characters in output into safe encoded representations, especially in

user-generated content.

Step 4: Authentication Controls 

Strengthen authentication mechanisms. Implement multi-factor

authentication, secure session management, and encrypted password



storage with hashing and salting to protect against unauthorized

access.

Step 5: CSRF Tokens 

Defend against CSRF by including a unique, secret token in forms

that change server state. This token should be validated on the server

side before any state-change operation is allowed.

Step 6: Code Audits 

Regularly perform code reviews and security audits. Use static and

dynamic analysis tools to detect potential vulnerabilities that may

have been missed during development.

Step 7: Update Libraries 

Keep third-party libraries and dependencies up-to-date. Security

vulnerabilities are often found in outdated software components, so

apply updates and patches promptly.

Step 8: Security Training 

Invest in security training for developers. Ensure that the

development team is aware of secure coding practices and emerging

threats to write inherently secure code from the start.

General Notes

Continuous Learning 

Security is an evolving field, and attackers constantly develop new

methods. It's important to stay informed about the latest security

threats and defenses.



Security Standards 

Consider adhering to security standards and frameworks such as

OWASP Top 10, CERT Coding Standards, and Common Weakness

Enumeration for additional guidance on secure coding.

Powered by: PlaybookWriter.com

https://playbookwriter.com/

	Secure Coding Implementation
	Step 1: Input Validation
	Step 2: Parameterized Queries
	Step 3: Output Encoding
	Step 4: Authentication Controls
	Step 5: CSRF Tokens
	Step 6: Code Audits
	Step 7: Update Libraries
	Step 8: Security Training
	General Notes
	Continuous Learning
	Security Standards



